
Computer-Checked Recurrence Extraction
for Functional Programs
Bowornmet Hudson, Daniel R. Licata
Wesleyan University

Contact Information:
Department of Mathematics and Computer Science
Wesleyan University
Middletown, CT 06459

E-mail: bhudson@wesleyan.edu

Introduction

Time complexity analysis for a recursive program
can be broken down into two steps:

1.Extracting a recurrence relation that describes the
running time in terms of the size of its input

2.Reducing the recurrence to obtain a closed form
and asymptotic bound on the running time

This can be an arduous process, as it is usually com-
puted by hand; this is especially true for large, elab-
orate pieces of code. The overall aim of this project
is to develop a formal system for automated com-
plexity analysis in Agda, a dependently-typed pro-
gramming language and proof assistant.

Thesis Statement:
It is possible to extract and formally reason about
time complexity properties of functional programs
using proof assistants.

Our Approach

•Following [1], we extract recurrences from source
programs using a monadic translation || · || into a
complexity language.
•The complexity language is equipped with an ab-

stract preorder judgement ≤s which specifies
ordering on terms and allows us to manipulate
recurrences into closed forms, from which we can
deduce asymptotic bounds on the running time of
the original source program.
•We implement and prove properties about our

system in a proof assistant, Agda, to ensure the

correctness of the language specifications and cost
information extracted by our system.

N

List C×

T ′length

||f ||

Source Language

data Tp : Set where
unit : Tp
nat : Tp
susp : Tp→ Tp
->s : Tp→ Tp→ Tp
×s : Tp→ Tp→ Tp

list : Tp→ Tp
bool : Tp

Complexity Language

The complexity language is designed to be a set-
ting where we can reason about program costs di-
rectly without needing to appeal to a denotational
semantics. The abstract cost measures specified by
the source language operational semantics are in-
terpreted in the complexity language as cost values
of type C.

Translation

The translation function || · || from source to com-
plexity is the main mechanism for recurrence ex-
traction in our system. The translation of a source

term e : τ returns a cost-potential pair of type
C × 〈〈τ〉〉, where the potential captures the notion
of the upper bound on the size of a term. We prove
that the results obtained by the translation are an
upper bound on the costs specified by the source
language operational semantics.

Denotational Semantics

We interpret the types and terms of the complex-
ity language as preorders and monotone functions
between preorders.

record Preorder-str (A : Set) : Set1 where
constructor preorder
field
≤ : A→ A→ Set

refl : ∀ x→ x ≤ x
trans : ∀ x y z→ x ≤ y→ y ≤ z→ x ≤ z

Future Work

1.Study methods for solving complexity language
recurrences into closed forms, from which we can
deduce an asymptotic bound on the running time
of source programs.

References
[1] Norman Danner, Jennifer Paykin, and James S. Royer. A
static cost analysis for a higher-order language. In Proceed-
ings of the 7th Workshop on Programming Languages Meets
Program Verification, PLPV 13, pages 2534, New York, NY,
USA, 2013. ACM.

